Characterizing possible typical asymptotic behaviours of cellular automata

Benjamin Hellouin joint work with Mathieu Sablik

Laboratoire d'Analyse, Topologie et Probabilités Aix-Marseille University

Tenth Conference on Computability and Complexity in Analysis LORIA, Nancy, 2013

1/24

- A, B finite alphabets;
 - \mathcal{A}^* the (finite) words;
 - $\mathcal{A}^{\mathbb{Z}}$ the configurations;
 - σ the shift action $\sigma(a)_i = a_{i-1}$;

A **cellular automaton** is an action $F: \mathcal{A}^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$ defined by a **local rule** $f: \mathcal{A}^{\mathbb{U}} \to \mathcal{A}$ on some neighbourhood \mathbb{U} .

For
$$\mathcal{A} = \{\blacksquare, \square\}$$
 and $\mathbb{U} = \{-1, 0, 1\}$:

- A, B finite alphabets;
 - \mathcal{A}^* the (finite) words;
 - $\mathcal{A}^{\mathbb{Z}}$ the configurations;
 - σ the shift action $\sigma(a)_i = a_{i-1}$;

A cellular automaton is an action $F: \mathcal{A}^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$ defined by a local rule $f: \mathcal{A}^{\mathbb{U}} \to \mathcal{A}$ on some neighbourhood \mathbb{U} .

For
$$\mathcal{A} = \{\blacksquare, \square\}$$
 and $\mathbb{U} = \{-1, 0, 1\}$:

- \mathcal{A}, \mathcal{B} finite alphabets;
 - \mathcal{A}^* the (finite) words;
 - $\mathcal{A}^{\mathbb{Z}}$ the configurations;
 - σ the shift action $\sigma(a)_i = a_{i-1}$;

A **cellular automaton** is an action $F: \mathcal{A}^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$ defined by a **local rule** $f: \mathcal{A}^{\mathbb{U}} \to \mathcal{A}$ on some neighbourhood \mathbb{U} .

For
$$\mathcal{A} = \{\blacksquare, \square\}$$
 and $\mathbb{U} = \{-1, 0, 1\}$:

- A, B finite alphabets;
 - \mathcal{A}^* the (finite) words;
 - $\mathcal{A}^{\mathbb{Z}}$ the configurations;
 - σ the shift action $\sigma(a)_i = a_{i-1}$;

A **cellular automaton** is an action $F: \mathcal{A}^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$ defined by a **local rule** $f: \mathcal{A}^{\mathbb{U}} \to \mathcal{A}$ on some neighbourhood \mathbb{U} .

For
$$\mathcal{A} = \{\blacksquare, \square\}$$
 and $\mathbb{U} = \{-1, 0, 1\}$:

CCA 2013

Simulations and typical asymptotic behaviour

Measure space

 $\mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ the σ -invariant probability measures on $\mathcal{A}^{\mathbb{Z}}$.

 $\mu([u])$ the probability that a word $u \in \mathcal{A}^*$ appears, for $\mu \in \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$.

Examples

Bernoulli (i.i.d) measures Let $(\lambda_a)_{a \in A}$ such that $\sum \lambda_a = 1$.

$$\forall u \in \mathcal{A}^*, \mu([u]) = \prod_{i=0}^{|u|-1} \lambda_{u_i}.$$

Measures supported by a periodic orbit For a finite word w,

$$\widehat{\delta_w} = \frac{1}{|w|} \sum_{i=0}^{|w|-1} \delta_{\sigma^i(\infty_w^\infty)}.$$

Markov measures with finite memory.

Hellouin, Sablik (LATP)

Action of an automaton on an initial measure

▶ F extends to an action $F_*: \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}}) \to \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$:

$$F_*\mu(U)=\mu(F^{-1}U)$$

for any borelian U.

- For an initial measure μ , $F_*^t \mu$ describes the repartition at time t;
- ► Typical asymptotic behaviour is well described by the limit(s) of $(F_*^t \mu)_{t \in \mathbb{N}}$ in the **weak-* topology**:

$$F_*^t \mu \xrightarrow[t \to \infty]{} \nu \quad \Leftrightarrow \quad \forall u \in \mathcal{A}^*, F_*^t \mu([u]) \to \nu([u]).$$

CCA 2013

Examples of asymptotic behaviour

6/24

Examples of asymptotic behaviour

Proposition

Let μ be the uniform Bernoulli measure on $\{0,1,2\}$ and F the 3-state cyclic automaton.

$$F_*^t \mu o rac{1}{3} \widehat{\delta_0} + rac{1}{3} \widehat{\delta_1} + rac{1}{3} \widehat{\delta_2}.$$

6/24

Main question

Question

Which measures ν are reachable as the limit of the sequence $(F_*^t \mu)_{t \in \mathbb{N}}$ for some cellular automaton F and initial measure μ ?

Main question

Question

Which measures ν are reachable as the limit of the sequence $(F_*^t \mu)_{t \in \mathbb{N}}$ for some cellular automaton F and initial measure μ ?

Answer

All (take F = Id and $\mu = \nu$).

Main question

Better question

Which measures ν are reachable as the limit of the sequence $(F_*^t\mu)_{t\in\mathbb{N}}$ for some cellular automaton F and **simple** initial measure μ (e.g. the uniform Bernoulli measure)?

In a sense, this would correspond to the "physically relevant" measure for F.

Section 2

Necessary conditions: computability obstructions

Topological obstructions

Topological obstruction

The accumulation points of $(F_*^t \mu)_{t \in \mathbb{N}}$ form a nonempty and **compact** set.

Measures and computability

A probability measure $\mu \in \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ is:

computable if
$$u o \mu([u])$$
 is computable,

i.e. if there exists $f:\mathcal{A}^* imes\mathbb{N} o\mathbb{Q}$ computable such that

$$|\mu([u]) - f(u,n)| < 2^{-n}$$

(⇔ can be **simulated** by a probabilistic Turing machine)

Examples of computable measures

- Any measure supported by a periodic orbit;
- Any Bernoulli or Markov measure with computable parameters.

Measures and computability

A probability measure $\mu \in \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ is:

semi-computable (\emptyset' -computable) if there exists a computable function $f: \mathcal{A}^* \times \mathbb{N} \to \mathbb{Q}$ such that

$$|\mu([u])-f(u,n)|\underset{n\to\infty}{\longrightarrow} 0.$$

(⇔ **limit** of a computable sequence of measures)

Examples of computable measures

- Any measure supported by a periodic orbit;
- ► Any Bernoulli or Markov measure with computable parameters.

Computability obstruction

Action of an automaton on a computable measure

- ▶ If μ is computable, then $F_*^t \mu$ is **computable**;
- If μ is computable, and $F_*^t \mu \xrightarrow[t \to \infty]{} \nu$, then ν is **semi-computable**.

Section 3

Sufficient conditions: construction of limit measures

State of the art

Motto:

"The only obstruction is the computability obstruction"

Theorem [Hochman, Meyerovitch 10]

Possible entropies for multidimensional subshifts of finite type are exactly the reals approximable from above.

Theorem [Boyer, Poupet, Theyssier 06], [Boyer, Delacourt, Sablik 10]

The language of words *u* satisfying

$$F_*^t\mu([u]) \not\to 0$$

can be Σ_3 -complete for any nondegenerate Bernoulli measure μ .

◆□ > ◆□ > ◆豆 > ◆豆 > 豆 の Q ○

Main result

Action of an automaton on a computable measure

If μ is computable, and $F_*^t\mu \underset{t \to \infty}{\longrightarrow} \nu$, then ν is **semi-computable**.

Main result

Action of an automaton on a computable measure

If μ is computable, and $F_*^t \mu \xrightarrow[t \to \infty]{} \nu$, then ν is **semi-computable**.

Theorem

Let ν be a **semi-computable** measure. There exists:

- ▶ an alpabet $\mathcal{B} \supset \mathcal{A}$
- ▶ a cellular automaton $F: \mathcal{B} \to \mathcal{B}$

such that, for any **ergodic** and **full-support** measure $\mu \in \mathcal{M}_{\sigma}(\mathcal{B}^{\mathbb{Z}})$,

$$F_*^t \mu \xrightarrow[t \to \infty]{} \nu$$

Approximation by periodic orbits

Proposition

Measures supported by periodic orbits are dense in $\mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$.

Example: Uniform Bernoulli measure

 $w_0 = 01$

 $w_1 = 0011$

 $w_2 = 00010111$

 $w_3 = 0000110100101111$

Approximation by periodic orbits

Proposition

Measures supported by periodic orbits are dense in $\mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$.

Example: Uniform Bernoulli measure

 $w_0 = 01$

 $w_1 = 0011$

 $w_2 = 00010111$

 $w_3 = 0000110100101111$

Proposition

If $\nu \in \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ is semi-computable, there is a **computable** sequence of words $(w_n)_{n \in \mathbb{N}}$ such that $\widehat{\delta_{w_n}} \to \nu$.

Our construction will compute each w_n and approach the measure $\widehat{\delta_{w_n}}$ by writing concatenated copies of w_n on all the configuration.

15 / 24

Section 4

Extensions and related results

Questions

1. Sets of accumulation points? Yes, with a computability condition on compact sets

Compact sets and computability

Consider the following distance function:

$$d_{\mathcal{M}}(\mu_1, \mu_2) = \sum_{n=0}^{\infty} \frac{1}{2^n} \max_{u \in \mathcal{A}^n} |\mu_1([u]) - \mu_2([u])|$$

Then the **computability of a compact set** V can be defined in the following way.

 $\mathcal V$ computable if $d_{\mathcal V}:\mathcal M_\sigma(\mathcal A^{\mathbb Z})\mapsto \mathbb R$ is **computable**, that is:

$$\exists f: \mathcal{A}^* \times \mathbb{N} \to \mathbb{Q} \text{ computable}, |d_{\mathcal{V}}(\widehat{\delta_w}) - f(w, n)| \leq \frac{1}{2^n}$$

and $\exists b: \mathbb{N} \mapsto \mathbb{O}$ computable.

$$d_{\mathcal{M}}(\mu_1,\mu_2) < b(m) \Rightarrow |d_{\mathcal{V}}(\mu_1) - d_{\mathcal{V}}(\mu_2)| \leq \frac{1}{2^m}$$

Compact sets and computability

Consider the following distance function:

$$d_{\mathcal{M}}(\mu_1, \mu_2) = \sum_{n=0}^{\infty} \frac{1}{2^n} \max_{u \in \mathcal{A}^n} |\mu_1([u]) - \mu_2([u])|$$

Then the **computability of a compact set** V can be defined in the following way.

 \mathcal{V} \emptyset' -lower-semi-computable if $\mathbf{d}_{\mathcal{V}} = \mathbf{lim} \, \mathbf{inf} \, \mathbf{d}_i$, where d_i are elements in $\mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}}) \mapsto \mathbb{R}$, and:

 $\exists f: \mathbb{N} \times \mathcal{A}^* \times \mathbb{N} \mapsto \mathbb{Q}$ computable, $|d_i(\widehat{\delta_w}) - f(i, w, n)| \leq \frac{1}{2^n} \text{ (sequential computability)}$

and $\exists b : \mathbb{N} \mapsto \mathbb{Q}$ computable,

 $d_{\mathcal{M}}(\mu_1,\mu_2) < b(m) \Rightarrow |d_i(\mu_1) - d_i(\mu_2)| \leq \frac{1}{2^m}$ (effective uniform equicontinuity).

Computability obstructions, again

Action of an automaton on a computable measure:

- ▶ If μ is computable, then $F_*^t \mu$ is **computable**;
- ▶ If μ is computable and the accumulation points of $(F_*^t\mu)_{t\in\mathbb{N}}$ are \mathcal{V} , then \mathcal{V} is nonempty, compact and \emptyset' -lower-semi-computable.

Intuitively, $d_{\mathcal{V}} = \liminf d_{\mathcal{M}}(F_*^t \mu, .)$.

Theorem

Let $\mathcal V$ be a nonempty, compact, **connected**, \emptyset' -lower-semi-computable set of measures.

Then there exists an automaton $F: \mathcal{A} \to \mathcal{A}$ such that, for any measure $\mu \in \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ σ -mixing and full-support,

The set of accumulation points of $(F_*^t \mu)_{t \in \mathbb{N}}$ is \mathcal{V} .

Questions

1. Sets of accumulation points? Yes, with a computability condition on compact sets

Questions

- 1. Sets of accumulation points? Yes, with a computability condition on compact sets
- 2. Implementation of the construction? No (but for good reasons)

Implementation

- Non-trivial Turing machine satisfying space constraints;
- Large number of states; (for $|\mathcal{B}|=$ 2, at least 2244 times more than the corresponding Turing machine)
- ► Speed of convergence $O\left(\frac{1}{\log t}\right)$ in the best case.

←□ → ←団 → ← 直 → 「直 ・夕 ○

Questions

- 1. Sets of accumulation points? Yes, with a computability condition on compact sets
- 2. Implementation of the construction? No (but for good reasons)
- 3. No auxiliary states? Yes, if the target measure is not full-support

Theorem

Let ν be a non full-support, semi-computable measure.

Then there exists an automaton $F: A \to A$ such that, for any measure $\mu \in \mathcal{M}_{\sigma}(A^{\mathbb{Z}})$ σ -mixing and full-support,

$$F_*^t \mu \xrightarrow[t \to \infty]{} \nu.$$

4□ > 4□ > 4 = > 4 = > = 90

Questions

- 1. Sets of accumulation points? Yes, with a computability condition on compact sets
- 2. Implementation of the construction? No (but for good reasons)
- 3. No auxiliary states? Yes, if the target measure is not full-support

Idea: use forbidden words to encode auxiliary states.

Remark

If $F_*^t \mu \to \nu$ where ν is a full support measure, then F is a **surjective** automaton and **the uniform Bernoulli measure is invariant**.

Questions

- 1. Sets of accumulation points? Yes, with a computability condition on compact sets
- 2. Implementation of the construction? No (but for good reasons)
- 3. No auxiliary states? Yes, if the target measure is not full-support
- 4. Cesaro mean convergence? Yes

CCA 2013

Questions

- 1. Sets of accumulation points? Yes, with a computability condition on compact sets
- 2. Implementation of the construction? No (but for good reasons)
- 3. No auxiliary states? Yes, if the target measure is not full-support
- 4. Cesaro mean convergence? Yes
- 5. Characterization of the support? In progress

Conjecture

K is a Σ_n -computable compact set of measures

 $\overline{\bigcup_{\nu \in K} supp(\nu)}$ is a Σ_{n+1} -computable compact set of configurations.

Questions

- 1. Sets of accumulation points? Yes, with a computability condition on compact sets
- 2. Implementation of the construction? No (but for good reasons)
- 3. No auxiliary states? Yes, if the target measure is not full-support
- 4. Cesaro mean convergence? Yes
- 5. Characterization of the support? In progress
- 6. Properties of the limit measure? Mostly undecidable

CCA 2013

Questions

- 1. Sets of accumulation points? Yes, with a computability condition on compact sets
- 2. Implementation of the construction? No (but for good reasons)
- 3. No auxiliary states? Yes, if the target measure is not full-support
- 4. Cesaro mean convergence? Yes
- 5. Characterization of the support? In progress
- 6. Properties of the limit measure? Mostly undecidable
- 7. Using the initial measure as an argument or an oracle? Some simple cases

Computation in the space of measures

Let us consider the operator

$$\mu \mapsto ext{accumulation points of } (extit{F}_*^t \mu)_{t \in \mathbb{R}}$$

The previous construction gave us operators that were essentially **constant** (on a large domain).

Question

Which operators $\mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}}) \to \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ (ou $\mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}}) \to \mathcal{P}(\mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}}))$) can be realized in this way?

CCA 2013

Computation in the space of measures

Let us consider the operator

$$\mu \mapsto ext{accumulation points of } (F_*^t \mu)_{t \in \mathbb{R}}$$

The previous construction gave us operators that were essentially **constant** (on a large domain).

Question

Which operators $\mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}}) \to \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ (ou $\mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}}) \to \mathcal{P}(\mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}}))$) can be realized in this way?

Theorem

Let $\nu : \mathbb{R} \to \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ be a **semi-computable** operator. There is:

- ▶ an alphabet $\mathcal{B} \supset \mathcal{A}$,
- ightharpoonup an automaton $F:\mathcal{B}^{\mathbb{Z}}
 ightarrow \mathcal{B}^{\mathbb{Z}}$

such that, for any **full-support** and **exponentially** σ **-mixing** measure μ ,

$$F_*^t \mu \xrightarrow[t \to \infty]{} \nu \left(\mu \left(\Box \right) \right).$$

Some examples

Let $M \subset \mathcal{M}_{\sigma}(\mathcal{B}^{\mathbb{Z}})$ be the set of **full-support**, **exponentially** σ **-mixing** measures.

Example 1: Density classification

There exists an automaton $F:\mathcal{B}^\mathbb{Z} \to \mathcal{B}^\mathbb{Z}$ realizing the operator:

$$\begin{split} M &\to \mathcal{M}_{\sigma}\big(\{0,1\}^{\mathbb{Z}}\big) \\ \mu &\mapsto \begin{cases} \widehat{\delta_0} & \text{if } \mu(\square) < \frac{1}{2} \\ \widehat{\delta_1} & \text{otherwise.} \end{cases} \end{split}$$

Some examples

Let $M \subset \mathcal{M}_{\sigma}(\mathcal{B}^{\mathbb{Z}})$ be the set of **full-support**, **exponentially** σ **-mixing** measures.

Example 1: Density classification

There exists an automaton $F:\mathcal{B}^\mathbb{Z}\to\mathcal{B}^\mathbb{Z}$ realizing the operator:

$$\begin{split} M &\to \mathcal{M}_{\sigma}\big(\{0,1\}^{\mathbb{Z}}\big) \\ \mu &\mapsto \begin{cases} \widehat{\delta_0} & \text{if } \mu(\square) < \frac{1}{2} \\ \widehat{\delta_1} & \text{otherwise.} \end{cases} \end{split}$$

Example 2: A simple oracle

There exists an automaton $F: \mathcal{B}^{\mathbb{Z}} \to \mathcal{B}^{\mathbb{Z}}$ realizing the operator:

$$M o \mathcal{M}_{\sigma}(\{0,1\}^{\mathbb{Z}})$$

 $\mu \mapsto \mathit{Ber}(\mu(\square))$

Hellouin, Sablik (LATP)

Characterization of limit measures

Implementation of a simple case

Fibonacci word

Consider the morphism:

$$\varphi: \quad \mathcal{A}^* \quad \to \quad \mathcal{A}^*$$

$$0 \quad \mapsto \quad 01$$

$$1 \quad \mapsto \quad 0$$

Then the sequence $\varphi^n(0)$ converges to an infinite word called **Fibonacci word**:

$$\varphi^{\infty}(0) = 0100101001001010010101\dots$$

and it is uniquely ergodic.